ON DIAGRAM=~CHASING IN DOUBLE COMPIEXES

by George M. Bergman®

Introduction. The "magic" of diagram~-chesing consists in establishing relations

between distant points of a diagram = exactness~implications, connecting morphisms,
etc.. These "long" connections are in general composites of "short" (unmagical)
connections, but the latter, and even the objects they join, are frequently not
visible in the diagram-chasing proof. We attempt to remedy this situetion here.
Given a double vcomplex in an abelian category, we consider for each object A
of the complex the horizontal and vertical homology objects at A, and two other
objects, denoted °A and Age For each arrow of the double complex we construct
a 6-term exact sequence of these objects. Standard results such as the S5x3-Lemms,,

the Snake Leime and the long exmct sequence of homologies associated with e short

~exact sequence of complexes are shawn to be easy applications of this exsct sequence.

We thén:develop some further (rathes baroque ):*esults along the lines.of the last
mentioned applicetion, obtaining wvarious diagrams of exact sequences from ecomplexss
with almost all rows and columns assumed emét.

The total homology of a double complex is also examined in terms of the
objects ®4 and Age

For curiosity we take 2 brief look at the more complicated world of triple
complexes.
The relation between;’che. idees developed here and J. Lembek's homologzical

forrulation of Goursat's Theorem [3] is examined in 86. 2,

ile end with some exercises.
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1. Basiecs.

We shall work in an abelian category 4. Capital letters and points in
diagrams will represent objects of L. lower=case letters and arrows in diagrams
will represent morphisms in 4. -

A double complex will mean an array of objects and maps in A as in
Figure 1, in general extending indefinitely in both directions, in which every
row and every column is a complex (successive arrows compose to zero) and all
squares commute® Note that a "partial double complex" such as Fig. 2. (the diagrem
for .rthe: - ~dehemma; consisting of two 4-term exact sequences and morphisms meking
comnuting squares) -cen be made a double complex by completing it with Ots -on
all sides; or by writing in some kernels and cokernels, and then O's. Thus

our results on double complexes will be applicable to such diagrams.
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Topologists often prefer double complexes with anticommuting squares, but
it is a familier observation that one tyve of complex can be turned into the
other by reversing the signs of the arrows in every other row (or column).
In the theory of spectral Sequences the vertical arrows of a double complex are

generelly drawn going upward, while in results like the 4«~lamme they are drawn

downward; I shall Zfollow the latter convention.

*The read.r should note that in diajrems vhere so ¢ objects are renresented
by lettars ard others by dots, the latter zre not assumcd zero; th.ey are
simply objects we shali not need wo refer <o by noxe. ‘
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Definition 1. Let ‘A be an object of a double complex, and let maps be lebeled

as in Figure 3. Then we defines

A= = Ker e / Im d, the horizontel homology object at A,

Af = Ker £/ Imc, the vertical homology object at A,

CA = (Ker e n Ker f£)/Im p (where p = ca = db), which we shall call
the receptor at A,

Ag = Ker q/ (Imc + Im d) (where g = ge = hf), which we shall call

the donor at A.

From the inclusion relations among the kernels and images in Definition 1

we get
a
£ N
At A~
N S/
Ao
Figure 4.

lemma~Definition 2. For any object A of a double complex, the identity

map of A irduces a commuting diagrem of maps as shown in Pigure 4.

We shall call these the infermural maps associated with the object A.
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In the disgram for a double complex, the donor and receptor at a given
object will generally be indicated by small squares té the lower=right and
upper-left of the point or letter representing that object. (Cf. Figure 5
end later figures.) Note that the side toward which the square is'displaced
corresponds to the direction of the most distent object involved in the definition
of the quotient~object in quest: on.(the domein or codomsin of the composite
arrow p or q). If one draws a double complex with vertical arrows going up,
one should of course write jA and A2 for the receptor and donor at A.
Occasionally we will indicate horizontal and vertical homology objects by
marks - and i placed over the location of the object, but this requires
suppressing the symbol for the object itself.

The motivaetion for the names "donor" and "receptor™ is seen ins

’a.l > '3 —
— A = B ——> &
la' l —_
( l
e) _ (v)
Figure 5.

Lemma~-Definition 3. Eech arrow f3: A -+ B in a double complex induces an

arrow A, —> °B, which we shall call the extramural map associeted with f.

The global picture of the extramursal maps in a double complex is shown
in Figure 6.
I shall not introduce any special symbols for these meps; others may
wish to do so, but since between any twe of the objects we have constructed
we do not define more than one map, we shall be able to get by in this note
with unlabeled arrows, representin, the wnigue mmpds d.fined between the objects

named.




Figure 6.

To show e composition of the maps we have defined, we shall use a single

arrow marked with dots indicating the intermediate objects involved, as in the

statement of the next result.

Lemma 4. If f3 A -» B is a horizontal arrow of a double complex (Figure 5(a)) then

the. (well lmown) induced map of vertical homology objects, Al - B{, is
given by the composition of two intermural and one extramural mapss

A °B

a

Af +——e—> B{.

Likewise, for a vertical map A —» B (Figure 5(b)) the induced map of

horizontal homology objects is given ﬁy

A, "B
A . e T S

We now come to our main lLemma. We will again state both the horizontal

and vertical cases, since we will have numerous occasions to use both.

The verilications are trivial if ons is allowed to look 2% eloments; one may
: loments; g

22217 the stendard sricks for trenclatin suah e g R
SRASIE VILCLS S0 Tronfiewing such a nroel ivto one vorking in o

- T




7" o
D )

Y AN
(a) A, C’iojg (o)
C ~———> & — (e) | (i/n
3] 0
~» B —=—p D a9 :
Icg : (a)
Figure 7.

Lomma. 5 (Selemandor Lemme ). ILet A =% B be & horizontal arrow in a double

complex, and C, D the objects above A and below B.respectively, as in Figure 7(a).
Then the following sequence formed from intramural:.and extremural maps (Figure 7(b))
is exacts % By

Cq—> A+ ——> A —~—p> "B —pp B eemea”D

Likewise, if A = B 1is a vertical arrow, we have the exmct sequence

a B
cu_-....L_> A{ ——> Ay ——> °5 > B 2 "p.

In either case, we shall cell the sequence displayed "the 6=term exact

sequence associated with the map A —» B.of the given double complex.™




2. Degenerate cases and easy applications.

Node that the extranmural arrows in Figure 6 stand head-to-head and eail-’co-tail,
and so camnnot be composed. But this difficmlty 1s clearly removed under appropriate
conditions by the follewing result, which we prove by taking the two homology objects

in the 6-term exact sequence(s) of Lame 5 to be O:

Corollary 6. Let A -» 3 be an arrow in a double complex, end suppose the row

or colurm conbeining this map is exact at both A and B. Then the induced

extramurel map is an isouorphism: Ag > "B,

Using another degencrate case of lLemms 5 we can relate our donors and receptors

to the conventional homology objectss
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Corollary 7., 1In each of the situations of Figure 8, if the darkened row or

column is exact at B, then the intermural map at A indicated below the diagram

is an isomorphism.

Proof (for the first ccse; others eare equivalent.) By C;)rollary 6 applied to

She arrow 0 -» 3 we get %5 % Op = 0. So the 6=term exact Seguence associated
with the na> A ~» 3 begins 0 =» A= — A, = 0= ..., giving the desired

isomorphism. (The sezuence associated with the map 0 = A now likewise ~ives
£ cive
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Most of the standerd "snall" diegram-chasing lemmes of homological algebra

can be obtained from the special cases of Lemzma 5 given by the above two Corollaries.

For eézamples 0 0

0

Lemms, 8 (The Sharp 3x3 Lemma, [2] p.365) If in Figure 9, ignoring the

parenthesized arrows, all columns and all but the first row are exact, then
the first row is also exact. _
If with the parenthesized arrows added the first column and middle row
are still exmct, then again so is the first row.
Proof., Using the exmotness assumptions, and the preceding corollaries, we gets
Af=- % AL ®AY =0,

Bte & B 9_1"]33505”.-.-.0,

t
o
and under the stronger hypotheses,

Cle o Cry 2 C *3B '-*_L"’B"eA"a ‘-.!.A"i = Q.

Xl--bxz—-)TE—-DO Xl—-> -.—-ﬂ‘)oxs-—-)O

'-—->Y3 0 —> Y, =» Y ~—>7Y

¢, =6 —> 0
Figure 10 Figure 11

Lerma 9  (Snake Lemma, [2-] p.50)., If in Pigure 10 both rows sre exact, and
if we add in a row of kernels an’ a row of cokernels as in Figure 11, then

these two rows .fit together in an exzect sequence




Proof. We extend Figure 1l to a double complex by adding in the kernel XO of

the mep X1-> xz, the cokernel Y4 of the map Y2 -3 Y3, and zero's everywhere

else. Thus, the middle three coluans and the middle two rows are exactb.

The exactness of (1) at K, now follows from the isomorphisms
Ko g « O o x 0y & g =0 ‘
2 20 XZ xln 1 a ’
and exactness at 02 is shown similarly.
We now want to get @ connecting map X, > C; making (1) exact at these
two objects, This is equivalent to getting an isomorphism between
Cc'k(K2 - K3) and Ker(Cl - Cz). But indeed, such an isomorphism is given
by the following composition of two intermural and five extramwral mapss

= Koeee % x Oy o «v & 8 U0 &% (1 e =
Cok(Kz-st) Kg Ksu Xy % Xy %Y Y a ¢, ® ¢ Ker(Cl-—> Cz)’
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Figure 1l2. Figure 13.

Lemna, 10. (Strong Four Lerme [2.], p.14). If in the commutative diagram

of Figure 12 the rows are exact, v 1s a monomorphism, and T an epimorphi sm,
-

then E(Ker &) = Ker ﬁ, and Im &= '] “*(Im ‘Q).

ik Idea of proof: Add in The vertical kornels and cokernels shown in Figure 13,

and zeroes ever,where else, and nove that the result is 2 double complex. The
desired conclusion is equivelent to the exactness of the two new rows, which one

verifies "as usual',



The Five Lama ([2:[, P. 4 ) is an immediate consequence.of the

above result.
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Figure 14, Figure 15,

Lemme 1l. If in Figure 14¥all rows but the first, Apys 8nd all columns but the
first, Ato, are exact, then the homologies of the first row and the first column
are isomorphics: Aor__-‘- 2 A:o{ (And analogously for a double complex bordered
on the bottom and right by zeroes.)

If in Figure 15 all columns are exact, and all rows but the first and
last are exmct, then the homologies of t‘nese‘ two rows agree except for a shift

by n=l: Ag.—~ %A = (And analogously for a vertical array bordered on

n,l-n+r
right and lef% by zeroes.)

(On the other hand, if we form a double complex as in Figure 14 but with
zeroes or the top and right, or on the bottom end left, and again, all but
the edge row an. column exact, thore need be no relstion betwceﬂ the homologies

of “hese. !

*_ . N . . . R . . . N
Zy en arcitrary cholce, wnen objects of g double comnlex are %o bde distingulshed

Ty nuzericel sudbscerists, I siall number 1T ss a double cocheir comnlex, Lf
read:rs ol this preprint tell me that for snme resason the reoverse choice
is preferable, I will chenge The Jirnnl version.
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2. Weakly bounded double complexes.

Before exploring the uses of the. full statement of Lemma 5, it
will be useful to consider a mild generalization of owr last result.

Suppose as in Figure 15 that we have a double complex with exmct columns,
ﬁ§nded above ard below by rows of O's. Rather than assuming exactness in all
but the top and bottom rows, let us assume it in all rows but the i ang jth,
for erbitrary i and j with 0<i < j <n. I cleim it will still be true that
the homologies of these rows agree up to a shift:
) : By % Byra(gmie1)™

Indeed, by composing extramural isomorphisms we seeg

R . . o .
(3.) ’ . Aiar Dg Aj:r'( j=i=1)’

the problem is to strengthen Corollary 7 to show that these objects are
isomorphic (by the intermural maps) to the homology objects of (2). But
if one examines the proof of thaet Corollary, one sees that all that is used

is the vanishing of certein donor and receptor objects near A:

i !

)
— o Py

IR set—3
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P

%A % af %A % Ae
A2 A~ Ag ® A
a b
(a) Figure 16. (b)

Cofolléfy 12 (to proof of borollary 7). If A is an objeét of aud;ﬁbiewébméiex,

as in Figure 16 (a) or (b), and the adjacent donor and receptor objects marked
tt 1 2 CR. S : .
) in that figure are zero, then the two intermural 1sonmorphisms indicated

below that rizure hold.

How in vhe situation we are intercsted in, our complex is exacth horizontelly

s S
and vertvically above thc i“! row, so we cenm use

(]

orollery 6 S0 comnced any donor




th row to 0. Hence we can use the above Corollary to

or receptor above the i
got the isomorphism between the left~hand sides of (2) and (3). Similerly,
using exmctness below the jth row we can connect the right-hand sides, and thus
wa..gab:ve (3) from (2), as claimed.

What if we have a double complex in which all ool\.nnﬁs and all but the
i ang jth rows are exact, but we do not assume that all but finitely many

rows are zero? Starting from the receptor at any object in the jth TOW, We cen

still get en infinite chain of isomorphisms going diagonally upward,

o ® « 0O «0 «
Ais T Ainl,eg Ai-l,eelo Aieg,eel ¥ oo

but we can no longer conclude that the common value is zero; and similarly

below the jth row. However, there are certainly other hypotheses than
comnon velue

the one we were using above that will allow us to say this"is 03 o.g., the

existence of zero quadrents (rather than half=-plames) to the upper right and

lower left. Let us mske, generally,

Definitioa 13. A double complex with objects Ar s will be called weekly

?

bounded if for every r and s, <There exists a positive integer n such that
0 ' . s . ..
‘%—n,s*-n or Ar-n-l,s*-nn is zero, and also & negative integer n with the

same property.

The above discussion now immediately yields the first statement of the next

Coroilary; the second statement follows from a similar argument.

Corollary 14 (to proof of Lemma 11). Let us be given a weakly bounded double

complex, with objects A.r’s.

If all colwwms are exmct, and all rows but the 1™ ang jth, with 1 < J,

then the homologies of shese rows sre isomornhic excevt for o shifts Ai,r"‘ =

. . -, nd anelogously if all but two coluins ; S
Ay ir-(3-i-1) (A e log i G wme ere exacs. )




If all rows but the i®® and a1l columns but the jth are exact (i and j

arbitrary), then the ith row and jth column have isomorphic homologies:

- .
by~ ® Ay gl

To see that the above Corollary fails without the hypothesmofweak

boundedness, consider Figure 17, where A 1is any nonzero object. All rows

all
andﬁcolumns are exact except the row with just a single "A". This

"contradic¢ts" both parts of the Corollary.

A

e e e e e Tl

oy )

> Q> Q>0 >A==p >0 >

oL by

> 020 >0 >A >0 >0 >

Yoy

+>0->0->0->0->0->0 >

vodov v

>0 >0 >0 =>0=->0 >0 >

YA S A

Figure 17.

3. Long exanct sequences.

At this point it would be easy to apply Lemma 5 (‘and Corollaries 6 and 7)
to give a quick construction of the long exact sequence of homologies associzted
with a short exmct sequence of complexes; the reader mey stov and do so himself.
But we shall find it more instructive to examine how the six-term exmct sequences
associated with é double complex link together undsr various weak hypotheses, and
see that the above long exact sequence is the simplest imbterssting case of some

more gen.ral phenom.na.
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If B is any object of a double complex (Figure 18) let us consider
the 6-term exect sequences associsted with the four arrows it o and out of B.
These are shown together in Figure lQ'(in which the central square and all

four "triangles" commute!) D,

We— bit— e,
J

Qe w

§

\

Do~ A+ > A,

e—
v o

Qe

Figure 19. 7

Now note what happene il our given double complex (Figure 18) is

vertically exact at B.

¥One vould like to be able to piece together copies of Figure 19 to get a nice
global diagram of the exmct sequences associated with all the arrows of a
double complex. But note that in Figure 19, the cyclic order in which the
four sequences are drawn is not the same as that of the maps in Figure 18

to which they correspond. This frustrates the noped-for "piecing together".
In fect, any attempt at a "global diagran" without additional hyvotheses ends

up looking like a treyful of squirming salamsnders.




Lemms, 15. Suppose in the situation of Figure 18 that B{ =0 (or more general ly,
that either of the maps B = B} or B{ - B is zero.) Then the following
sequence (obtained from the "left-hand" and "bottom"* branches of Figure 18, which
dorrespond to the maps A = B > C of Figure 18) is exacts,.. |
(4) D> A+ > A, >°B > B~ B, »7C » o~ » %

(Likewise, if B== = 0, we get an exact sequence from the other two
branches of Figure 19.)
Proof, We know that the 6-term sequences of which Figure 19 is composed are
all exact; this gives us the exactness of (4) everywherec except at B<-. There
we know (from the "bottom" branch) that (Ker B~ -» B,) = Im(E -> B~-).
But if the arrow B -» B{ is zero, £hen by exactness of the "top" branch,
E, > ®B is onto, so Im(°B~» B=) = Im(Eo-b B+) = Ker(B=~ -» B ), proving the
exactness of (4). The corresponding,argument gives the same result if the map

B{ =» By is zero.

Corollary 16. If in a double complex as in Figwre 18 the vertical homologiés

ere zero for all objects in the row ese=» A > B -» € = ,,., then we get a

long exact sequence of associated objects and imtermural and extranural maps:

coe > > pe >4 > B > B > By > C > (= > Cq>...

Corollaery 17. If in a double complex (as in Figure 20) all columns are exact,

long
then the rows induce & system of exact sequences linked by isomorphisms, as

in Figure 21,

I L
> A >3 >0 =>D->
b 4+ 4 L
> KX =>L =>M->]->
v 4+ 1l
P-—»(Q >R -5 -
R AN A
>H=>X=»>YY >1 >
N

Fisure 20.
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Figure 21.

Note that in these long exact sequences the homology objects form every
third term = the terms of Figure 21 that are not connected either above or
below by isomorphisms.

Suppose now that in our original double complex, in addition to all columns
being exact, some row is exact. This neans that in the induced system of long
exact sequences, the corresponding row will have every third term zero; and so

the meps connecting the remeining terms will be isomorphisms (Figure 22).

*L‘*""—)'!-!‘-"“)':—’
n 1]
o M . . I .
H ]
-t Pt Pt Pt Pt Pt Pt
1] il : ]
—)'-’0"'&-)‘-"—’"‘-"-)

Figure 22.
We see that these, together with the vertical isomorphisms, tie togsther
~ the preceding and following exact sequence to give a system essentially like
Figure 21 &galn, except for a horizontal shift by one period. Lf n successive
rows of the double complex are exact, we get a similar "annealing" with a shift
by n periods.

If all rows are exact above a certein roint, then we gzet infinite cheins




of isomorphisms going upward and to the right.. If the complex is also weakly
bounded (Definition 13) the common values along these chains will be zero; in
particular, every third term of the long exact sequence corresponding to the
top nonexact row will be zero, and again we get isomorphisms between successive
remaining terms. This ti;ne, half of these will be horizontal homology objects.
If we consider homology objects ™more importent™ than donors and receptors, we
will use these isomorphisms and the isomorphisms joining this row to the one
below to insert these objects in that row in place of all fhe recepters,
Concretely, suppose in Figure 20 that all rows above the top one shown are
exact, and the cohplex is weakly bounded above. Then the top'two rows of

A= = A

|

Figure 21 will teke the form —=» K .—» Ko = %L - L - ..., which we rewrite

> Ko > K, > Ao > L+ ... . Thus we get a system of long exact sequences

I

in which the top sequence has homology objects for two out of every three terms;

end the same for the bottom sequence if all terms below some point are exsct.

When there are only three nonexact rows, we get a single sequence with 2ll terms
homology objectss

Lemma 18, Suppose we are given e weekly bounded double cochain complex, with objects

th

th
Angs all coluuns exact, and all rows exec* except the ith, j and k , where

i<j<k. Lt m= j=i=l, n = krj=l. Then we get a long exact sequence
- > A .
. o.* Ai’rm“' - Aj,r " k’r_;l‘"’ Ai,rﬂn"'r-’ AJ,!"*'F--’ Ak’r_n_*_r--—’o o0
For compsrison, we note that if in Figure 20, all rows but the four

rows shown are exact (in addition to all colunns), and the complex is weskly

bounded, then Figure 21 (precisely: its middle ﬁ'o rows) become rigure 23:



< K+ - Kq & A= - L+ - L, = B= > U~ > Mg = (o > No >

I I o

> We +9 = Qe> X+ >R > Re > Y+ %5 > 5o > Zo >

Figure 23.

One piece of unfinished business —-m_Figure 19, In Lemms 16, wé saw how
the 6=term exsct seguences corresponding to successive arrows of Figure 18,
A->B->»C (or E-B - F) can link together in a 9-term seguence. Under
other hypotheses, the sequences corresponding to a Pair of arrows that go "around
s corner", suchas E == 3B = C (or A =» B = F) link to give an 8=term exact
sequence. (I formulate the result, not so much with the idea that it should be
used and quoted, as that it should be suggestive of how to work with 6=term

sequences. )

Lemme 19. In the situabion of Figure 18, if
(a) E, = 0 (or more generally if the map Eq=» °B 18 zero), resp. if
(v) the maps Eg-~» B and B} = 9C are zero, resp. if
(¢) % =0 (or more generally if the map Bp—» 9 is zero),
then the left- and right-hand branches of Figure 19 combine to give an exact
sequence; namely, according to the respective cases
- B} > By —>
Dy —> A= "’Au{"> :B —» B, -—>}°F — F{ —> %G,
- B e P >

ir (d) Bg = O = 0, then all three of these sequencescan be written:

Dy = A+ —>4g > B} - B= = 7F.— F} — %G
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4, Some rows and some columns.

In the preceding section we saw what happens when all columns and all
but a finite number qf rows of a weakly bounded doublec complex are exach; ‘
the corresponding‘results, of course, hold when all rows and all but finitely
many columns are exact.

More generally, what if all but m rows and all but n columns are
exact? In this section I shall indicate the sort of behavior that occurs.
I omit the proofs; these use the same ideas as in the preceding section, but
in general, the situations "before", "at" and "after" each intersection of o
nonexact row and a nonexact column require slightly -different argwments.

The case m +n< 2 1is covered by Corollary 14 above. The ocase m+n = 3
is covered (up to row~column reversel) by Lemma 18 and
Lemma 20. Suppose we have & weakly bounded double cochain complex with objects
A, all columns exact but the i™, and all rows exact bub the 3 and €™, where

J < k. Then writing m = i-j, n = i=k, we have an exact sequence

.os—P> - —> A — A -, L.
‘ Ak,r+n Al,r+ AJ,!‘+m"' A’k,r+m+l"'

This begiﬁs to look as though the general case will behave as nicely
a8 the speciel caées m=0 end n=0. But this fails when mtn = 4. We saw in
Figure 23 what haééens when we have 4 not-necessarily-exact rows. Figure 24
shows a double complex with three not-necessarily-exmct rows and one not=-
necessarily-exact colum. (The arrows of these rows and column are darkened,
and the elements denoted by letlers rather than dots.) Figure 25(e) shows
the system of "half-long" exact sequences that this double complex leads to.
The "ends" look like Figure 23, and 5o on like this indefinitely, but there

is a peculiar "splicing" in the middle.. Hicher velues of m and/or n yield
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systems with more "splicings"; essentially, there is one for each object of
th;igﬁﬁ;le complex which lies at the interesection of an inexsct row and an
inexact column, and does not have either to its upper right or lower left a
region where all donors and receptors are zero (due to exs..ness and weak
boundedness), The one splicing in Figure 26(a) comes from the unique object
H of Figure 24 with these properties.

Figure 25(b) shows the same exact sequences as Figure 25(a), but arranged
to show more clearly how the sequences interlock. The exmct sequences are those
chains of arrows which can be followed "smoothly™ down the diagram. (Figure 26
lists for the benéfit of the reader who wishes to check the exactmess of the
sequences of Figure 25 the 3somorphisms of objects that he should first verify.
He should then, reversing the final step in the derivation of these diagrams,
make the substitutions indicated by the 3~term isomorphisms, e.g., B for X{,
throughout the diagram.) '

The interpoletion of some exmct rows between the three inexect rows of
Figure 24 will not affect the resulting system of exact sequences, Figure 25,
except by a shift of indices.

Figures 27 and 28 show the case m =.n = 2. Here there are two "bad"
objeots, C and L, and hence two "splicings". If exact rows or columns are
introduced between the given inexact ones, the splicings move farther apexrt,

with a longer "normal" stretch between them.

“
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5. Total homology.
It is probably foolhardy, at very least, for someone who does not know
spectral sequences to attempty to say someth:.ng about the total homoloz- of

a double complex. However, I shall show here some conmections between that

subject and the constructions ®A and Ay we have been working vd th.

e e v s e N S AR e, —_

Let us be given e double cochein complex with objeots A (.1, re Z ),
vertical arrows denoted L) 3 A, “> A, and horizontal arrows
1" M4,r i+l,r

523 Ai,r ->» Ai,r+l' Thus, at each object Ai,r we have

(5). - S 5152=5281, 8181=o, 5 5

At this point one usually defines the total complex induced by this

double complex to have for objects the direct sums A, = °i+r= n Ai r
9

(a.ssmnlng them deflned in our catee,ory 4). But we maey as well be more generalizati
7Y in the

general. Iet .5 denote the abelian category of all Z ~tuples X= (X, )IGZ 1itera ture?
Z

of objeots of 4, and let ¥: A" - B denote any exact

functor into an abelian category B, commuting with shift; i.e., such that

for any o-jects Xi (ieZ ) of A we have a functorial isomorphisms

(62 an. z i+1°’
For instence, with 4 = B = the catcgory of all R-modules (R any ring) we
might teke ) +to e (i) dircet swm,* or (ii) direct product, or

In any abelian category A with countable dirsct sums {coproducts), the functor

— . z 3 “_" r -;‘ sl -+ 4. ol
y = ..yt AT >4 isright exact and satvisfies (§). Tor J +the category

~
of all R~uiodules it 1s easy to checlt that this construction is also left sxact,
and likowlise that the lirect rmw duct construction is rizht exact. But there are
abelian coteories wlose countable direct sums or oroducis are not exacts
In the cavcjory 4 of torsion abellan grouvs, =rblirary direct products are given

e Sl

by the Torsion sutgroup of Tlo direct nroduct as Zroups. [l] Bxercise I.3), If p
is any prime, 1t 1s cosy to ses that the direct oroduct in ’ohis category of the

family of short exsot sequences O -» L 3 > Z 1e1 > L > 07 ic not right exact.
2 e ? G20)




(iii) or (iii') the right- or le ft-truncated "Laurent sum" operations (generalizing
formal Lewrent series), ||-@ and o-]T, defined by [[-@ A~ (TT . Ai)x(ebo A,)
end @-]] A = @ <o A) x (Tr1>0 A ) (verify (6)), or some pathologicel
construction such as (1v) 2 A, = TT Ay /7 @A

We now deflne A = [ Ay p-i (ne Z). The fpmllles of maps S a.nd S
induce meps which we shall denote by the same symbols, Sl’ 823 -> An+1‘
(The isomorphism (6) is used in the definition of 81: ) These will again cleerly
satisfy (5). 8ince 81 and 82 now represent maps which can simultaneously have
the same range end domein, we may add end subtract them, and (5) immediately

yields

&,+8,)8,-8) =0 = (6,-5,08,+5,)

Thus, if we define for each n, 8= 82 + (-l)ns’_s ‘A‘n -> An+l’ we get
a cochain complex

.O.L A LA ».Ol
n—l

which we shall call the total complex (with respect to the functor )-:) of our
given double complex. Since the maps 8 come from maps going dovnmward and to
the right in our original double complex, we shall denote the cohomology objects
of the above complex by
- 1) §

(7) AN = Ker(An —> An+1)/1m(An-l - An)

So far, nothing is new. We now bring our conor and recepbor objects into
the picture.

Iet us define
8 = =y 9
(8) L N )M SN

From the exsctness of §, it follows that
(Ker 811\ Ker 82)/11"1(5182)

1

Ano

(9)

It

B
An




(In the "Ker"s- in the above equations, 8182 etc. refers, of course, to
the map by that name with domain A,, while in the "Im"s,.maps with codomain
A are meant. ) |
The identity of An now induces intermural maps
‘An -+ AN > A, g
(We could also have given definitions and ‘characterizations of A,{ and

An-- ana.logous to (8) and (9), and gotten a commuting diegrem

/L\

A L/

but we shall have no use for these additional objects and maps here.)

Finally, the two sets of extramural maps constructed from owr original

8,1

1’ 72
Ana ->°An+1; these are induced in E by the maps 81, 82: A Ay Iet us

double complex in 81 yield, for each n, two meps which we shall call §

writes - -

-
(10) §= 8, + (-1)" 8,5 A >"a

By (7), we sece that the composition of § with the intermural map

§_ A .\

Ap-l1g° i - > Ay

is zero. This says that the two compositions.

81 IIAn
p e e Y
n-lg -

8
are equal up to sign. Hence below, we shall only refer to the composition

involving Sl; ani the same will apply to Unhe composite mads Ano——*-—* An+l\'

lerms 20. Tor each n, the Seguence of intermural and extramursl mans and their
conpositions

5, 5 5
(1) Aoaly L s AN —> a4 — Oy L= AN ~._11_“.J_L_>A

na nri

is exact.

-2



Proof. We can get this by a trick from Lemma 5. We construct a double complex
in § having objects Bi,r = Aitr’ having slfor horizontal maps, and 51 for
vertical maps (Figure 29). From (5) and (10) we see that S;au ='518é = 5551 =

6: 6', an¢ that in each object, Im8;~~']'.m § =1In 81 + Im 82, Ker 61,. Kerd =

Ker §, A Ker 8,. It easily follows that Byyr™ = Ay Byp = A s
aBi r 9A1+r' and thet (1ll) is just the 6=term exmct sequence associated
2

with any horizontal arrow of this double complex.

Bial,r ; Ap-1
5 S 8y & & 5. a8
—-§-> %,1 -éL—>'%.1 b, — -§f§1—> ﬁ.irfé:ééh>‘£ilA 25
i,r i,r+l —_— n n+l
l51 151 v 481
L B+, r+l Aniz

Figure 29.
Now Corollary 6 (or if one prefers, Corollary 16 epplied %o any row. 6f the

euxiliary double complex of the above proof) givess

Corollary 21. If our original double complex has exact columns, then one has

a long exact sequence in B3
5 S
(12} '—~"'">°An""’An\.—)Ann—> A

n+l — e

(Note the curious property of this sequences +that the objects joined

by the comnecting morphisms 9 are isonorphic under a different map, SIJ(Gor.GL]

Corollary 22. If our original double complex has cxact rows and columns,

and is weakly bounded.(e.g., if Ai .= 0 ‘whenever i or r is negative),
]

r

then all total homology objects Ag\ are zero.

Proof. For all n, Oy =3 %, . =3 0 =0, and similerly A = 0. So
. 3 b

by (12), Aﬁ\ = 0,
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For the remainder of this section, we shell assume as in Corollary 21 that

our given double complex has exnot columns, and we will investigate the behavior

"of the exact sequence (12) for various choices of 4 and 2.

Consider ﬁhe pair of objects ‘A“na and nAn+l of that sequence. We have

two maps between them, one of which is an isomorphism beceuse of our assumption

of exact columnss §
1w
—_——

S

This diagram comes from a system of objects and meps in At

b, 5
(14}, ... —83> % € 4 -é?# “ o —8-2»

1+1yn=i i,n=ig ineirl  Ai-l,neitlg

(of. Figure 21), Identifying the successive isomorphic objects of (13'),
we may regard this diegram as a directed system in A. When (13') has a direct
or
. sp & . X . - PO
limit in A, we shall denote this, by ebuse of terminology, Lim An.u,nln.m An+lf
Now ascume that A has countable coproducts. Then it is well=known that

it will also have countable direct limits, and easy.to check that the direct

limit of (14) can be constructed as the cokernel of the map

(15). 52 - Sl: 6 A — 9 9

i,n-ig i,m-i+l”

Now.suppose thgt countable coproducts are exact in A, end take Z =6 .
Then (up to a possible change of sign of §1, wnhich obviously won't change the
direct limit of (l4) ) we see that (18) is just

3

Q
(18) 1] Ann"" An'rl

In sumerys if ) =&, then the cokernel of (16) is given by the direct
limit of (14).

The kernel o (18) does mot have sucl. - natursal gencral deserivtion in thice




situabion. But if we take 4  to be the category »f R-modules (R any ring)
this kernel will always be zero! For Suppose <X 1S a nonzero element of

A =60 A.

- 1,n-i} Let 1 be the largest integer sz:ch that 0 # x, € Ai

,n"lu

One then finds thet the aAi+1 i component of § (x) 1is nonzero, proving
- 2=

8 injective.

Applying these observations to the exact sequence (12) we gets

Corollary 23. Given a double complex of R-modules (R a ring) with exsct
colunns, if one forms the total complex with respect to "® ", then the total

homology is described bys

An\ gI—‘.:L-g u%’i 2&%‘].“‘

Duelizing the observation following (16) we gets If z =TT (for 4 &
category with exact countable direct products) then the kermel of (16) is the inverse
limit of (14). The cokernel is now hard to describe; even for J +the category of
R-modutes, it is not in generel zesro. One can get a ~ore compliceted result than
the analog of Corollary 23, which I will record withous detailed argument:

Suppose an element x € An\ has the vrorerty that for any finite subset
I &Z, x can be represented by a cocycle in An which hes zero component in

all A € I). Then e will call =z a "seekaboo element" (becanse w-erever

i,n=i (1
you look for it, it isn't therel!) The set ol these ¢lements forms & summodule
of An\ » Which we shall denote PS(A.,l\). “hen from (12) we can et & s-ord

exact sequence

- . ~ . o
(17) 0 = FBAN) > AN > (Lizm Ay = Lin %Ay,) - O,




(To see an exemple in which the.left=hand term of (1¥) is nonzero, the

reader may exsmine the total homology of the double complex shown in Figure 30,

+ + 4 v o2
—p () —p ) ey ) —— [ ——
v v v o |
e () iy ) iy L D [, i
v v oo VA
sty () —— L —> L —> ) —>
v I v L
— > U —> 0> ) —
i VR v

with respect to T[, at the "upper" nonzero diagonal.  Remerks.. since. -
peekaboo elements can be characterized as those such that any representing

cocycle cen be approximated erbitrarily closely (in an appropriste sense) by

a coboundary, I expect that they would not appear.if one took a -category’ 4.

B e

whose 0] ootp_;@%&g apprapriate completeness properdvy. )M

03 s RN L AR NI e sy o o e B AAS

(Incidentally, it is not hard to show, still for 4 = R-module::d.z =TT,

that if the maps §2 of (14) are all surjective, then the cokernsl of (16) is

zero. In particular, if our double complex has both exact rows end exect colimns,

~

o .
end we let Ann = nAn+l denove the corron value up to isomorphism of 211 the tems

(equivalently, the direet or inverse limit) of (14), then from (12) we got:

~ ~
N\ x O ]
An Ann A:rri'l )
VYle now come To the best behoved = or ruwst triviel -~ casc: A = R-roldules

X = the right-truncatved Leurent sum Junctor | ,- @. Thus

Ay = (TTi<O Ai,n_i) x (ei>o Ai’n_i).

Note that in 8= 89 + 81, the two torms P, and 8 are each nomogeneous, of
[

dissines degress, Wit recnec to their eflfscts on $iic first subserints of A, 13
L Ve
i-gid ]

and Shet ne swarnd ol hijher degrec, %, is invertible. It Follows that

§ will ve invertible! Indecd, i wo wwrite  § = (1+ €)(281), wion £= 8.8
& -

i3 nomojenaous ol deree =1 in Shesc satserinis, and we s2e that the Jormal



expression r S - =1 2

§-1= +§,7(1-e+e”=-...)
will converge on our ... ... Lauwrent sum modules. Corollery 21 now immediately
gives:

Corollary 24. A double cochain complex of R-modules with exsct columns has

trivial tobal cohomology with respect to the right truncated Leurent sum

functor [[-@.

With respect to the left trunceted lLaurent sum operation TT-@, 8 has
kernel and cokernel whose description in terms of the directed system (13)
and which I will not try to characterize
is much more difficult, (of course, if we assume rows rather then columns
exact in our double complex of R-modules, the behaviors of left and right
truncated leurent sums are reversed.)

It is also easy to shows

Corollary 25. Let A De any abelian category with exact counteable direct

products dr coproducts (as required), and let us be given a weakly bounded

cochain complex with exect columns. Then if we form the Total complex with
respect to any of the functors 8, 'IT, @—-ﬂ-, TT-@, the induced maps 3: An;’ °An+l

(sce (10)) will be isomorphisms, and hence the total cohomology will be O.

I have not investigated eny other Dunctors z A generalization of
exerole (3v) on 0.24 is tle roduced direct preduct with respect To any

“runslation=invariant filter on L.
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8. Renarks.

6.1. A nore sophistiocated formulation for the basic results of

this paper (Definitions Lemmas and Corollaries l=5, 17, 20, 21) would refer
to a single object A of an abelian category (possibly graded) with two
commuting (or betﬁ;r, anticommutingj square=zero endomorphisms sl and 82.
In particular, in.fhe formulation of Corollary 17, the verticel .exactness
assunption would simply take the form .m(sl) = Ker(&l),'.andfthg;-di-agﬁam-c:j )
abtained, Figure 21, would reduce to an exact couples

Ap—> "A %4,

A= .

6.2. Analogous to the one homology object one can associate with each object
of a single complex, and the four objects we have associated with each obFct
of a double complex, one may assoclate to every object A of a triple complex
18 "momological objects™! These are shown schematically in Figure 3L. Each
of the diagrams on the left side of that ligure shows an object A of &
double complex, the seven other objects, forming with A <Uhe vortices of a
cube . (a cell of the complex),which have vossibly nontrivial maps into A,

and the seven objects with possibly nontrivial maps of A into them., Certain
vertices of each of these cubes are marked with bpleck dots., The homological

i

object we arc d.fining in each cese 1s

Fh

DN (kernels of mass o A into She "“lower" marked objects)

(18)

.
D> (images of mans inko A from the "uprer" Larked objcts)

”3ij_mw



(x 3)

(x 3)

(x 3)




(When several such objects differ only by a permutation of the three coordinates,

I have shown only one representative. fhe perenthetical "(x 1)" or "(x 3)M
diagram

thus indicete the number of diagrams that each j shown stands for.)

These eighteen constructions are distinguished among “he larger number
of formally possible ones by the property that thc denominator of (18) is
in each case the largest sum of images that must lie in the numerator, and
the numerator is the smallest intersection-ofhkernéls submodule (the interscction
of the largest irredundent femily of kernels) necesserily containing the
denominator. (One may look at these eighteen peirs as arising from a Galois
connection between vertices of the cell "above™ A and vertices of the cell
"below" A.) This criterion seems to give the constructions of homologicel
interest. E.g., these are precisely the constructions of the form (18) which
are zero for all bounded (almost all objects zero) triple complexes exact in
all directions.

The diagram at the right side of Figure 31 shows the intermural maps
emong these 18 objects. (It forms a lattice because of tre properties of
Galois connections.) TFigure 32, showing the corresponding pictures for
simple and double complexes, is given for comparison.

It would be interesting to see what examct sequences or diagrems may link
the objects defined in rijure Zl. Whether such results would be of eny use is

another question’

lagrar t ion teri :
Dlasram construction characte ized

simple comolexes
homology

[ T

double complexes

T_l By
o
L_:Lj DL—_I A-o-/ \A{r
-0 N/

=

Figure 3Z4.
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6.3, J. Lembek rSJ (cf. [5] p.96) associates to any commuting square, as in

Figure 33, two objects which he call the kernel ratio and the image ratio of

..a;.pR

P o
bl e fw= ca = db
Q "’"d S

Figure 33.

the square. To bring out the snalogy with the definitions of this paper, let

me call them

P

« = Ker £ /(Ker a + Ker b)

*s

il

(IncAaImd)/ In £

Note that if the given square is embedded in a double complex which is
verticelly and horizontelly exact at P, respectively at S, +then one has
P, = Py > respectively ¥s = A3, |

Avy commuting diagram as in Figure 34 with exact rows can be extended, by
—_—
c

—

————p
——

Oy
Ué— o
e 13

Pigure 34.

pubting in tre kernel and cokernel of ¢, +to 2 deuble comvlex exact in both

directions av R and S. :ence Corollary 6, applied to ¢, gives us

~ o Oc & ¥
Ry *Rg® %85 % 7S,
Thie isomorphisn R:‘,‘g ¥3 i3 sroved by Lanmbek [5_1 end used to get various other

results, more or less as I use Corollary 6 in 82 above. The constructions ( )«

Lo o smalier

and *( ) heve the advanta;e o: bein: defiradle wish reference

diazres Shan ry Ja =xd ). They sner: with thesc che nroserty of
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vanishing in any finite doubly exact double complex. But they have the disadventage
that one doesn't seem to be able to do anything v}ii;h them without exactness
assumptions. As we have seen, under such essumptions one has the analog of the
extramural isomorphism of Corollary 6, but without them one does not have analogs
of extranural maps,‘ c;r lemma 5.
Lembek proves his result for not-necessar’il& ebelian groups, though he
applies it in sbelian situations. (Leicht [4] gives a category-theoretic
version of Ia.mbek's’ result. ) However, note that exactness of the top row of
Figure 34 is necessary to conclude that *s will be a group, i.e., that the-
denominator in the definition is a normal subgroup of the numerstor. I noficed
when I was first working out the Selamander Lemme that some kind of version could
be stated for not=necessarily-atelian groups, but we run into even worse
difficulties = e.g., in Definition 1, Ay would have to be simply a pointed set,
the quotient of .the group Ker q by the left action of the subgroup Im ¢ and
the right action of the subgroup Im d. Yet, it certainly would be desirable
to have a tool for proving the noncommutative versions of basic diagram-chasing

Lemmas, then these hold.




7. Exercises. ‘ ;

Telo

(a) let A be an abelian category, let 4_&,# denote the ebelian
~ —F
category of double complexes in A (where morphisms, are families of meps

£ H -Ai e B. comauting with 81 and 82), and let PFX S»-")b(AH=) be the
r} ~

i,r i,r
class of double complexes with all rows and columns exact, and only finitely
many nonzero objectss ILet EX<c FX be the class of double complexes of the

simple form shown in Figure 35 (A € Ob(A)). Prove: FX is the least subolass

0 o 0 0
| Voo vy
o—-»A—>i.-->o —»T-»}l}—> o—-»ll)'—>D->o
0 —>» A —» A —>0 ~> C —~» D —» 0 'EO—"D‘—)Df")O
I v ¥
o) 0 : o 0 0
Figure 35 Figure 36

of Ob(A#) containing EX and closed under extensions. (Hints Given an

object of FX, prove that one can mep it onto an object of EX as suggested

in Pigure 36, For surjectivity at A, use % =0.)
(v) Staté and prove the analogous result for triple or n~fuld complexes.

(The complicated homological constructions considered in the oreceding section

are not needed! a( )s applied in various vlenes of the diagran, is still the xey! )
(c) =stablish the claim (p.33) thet all the constructions indicated in

Figure 31 give zzro at all odbjects of a bounded exact triple complex. (Hints

snow they give zero on the ouilding-block objects used in vert (b).)

(a) Show tha% from any diegram as shown in Figure 37, in which the
short vertical sequsnces are exact, and Che rows —» A ~», ..~ H -» s
»>J P> P >, and >R >... >W-> are complexes, one can fornm

a long exact scguence of' homologiess

ree > C+ > L= > T+ > D —> D+ - B~ 5 E} —> e = U= = Fe > .,,




bobod
O ¢ e— €€ C

b
O+ g— R €—O

bV
O r€— 4 Q& O

Vo
it
s
i

EER

Figure 37,

(v) Given an arrow of a double complex, F -» G in Figure 38, obtain

- the diagraem of Figure 39, and apply the preceding result to get a long exmct

Figure 38.
sequence. Write out the "middle" six terms of that sequence, and then the three
on either side of these. Conclusions we can extend our 6-term "salamander"
sequences to long(er) examct sequences if we are willing to define more complicated

sorts of auxiliary objects. Do these objects still have the property of being

zero on bounded exact double complexes?

=éE— O
< C

|
i
I

D&
|
jas}

& ¢—

-
y
&

<D<—c4&—s;<w

=]
=
.
.

|

7igure 39.
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